Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Nutrition ; 118: 112292, 2024 Feb.
Article En | MEDLINE | ID: mdl-38042045

OBJECTIVES: Diallyl disulfide (DADS) is a natural organosulfur compound found in garlic and related plants with various pharmacologic effects. However, whether DADS improves obesity-induced insulin resistance (IR) and its underlying mechanisms remain unclear. The aim of this study was to investigate the effects of DADS on systemic IR in high-fat diet-induced obese mice. METHODS: To induce obesity, 8-wk-old male C57BL/6J mice were fed a high-fat diet (60% fat/kcal). The mice were assigned to three weight-matched groups: control (CON, n = 8), low-dose DADS (DADS-L, n = 8), and high-dose DADS (DADS-H, n = 9). The treated mice were orally administered DADS (25 or 100 mg/kg) 5 d/wk for 8 wk. At 15 wk of age, an intraperitoneal glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed. Twenty-four hours after the final administration of DADS, epididymal fat and the liver were sampled after a 5-h fast. RESULTS: DADS administration significantly attenuated body and fat weight gains during the experimental period. Additionally, systemic IR, as evaluated by ITT, was significantly improved by DADS administration in a dose-dependent manner. High-dose DADS administration significantly decreased liver triacylglycerol levels. Moreover, high-dose DADS administration decreased the c-Jun N-terminal kinase (JNK) phosphorylation and significantly increased heat shock protein 72 expression in the liver. CONCLUSIONS: The results of this study suggested that DADS administration alleviated systemic IR in obese mice. This may be associated with decreased hepatic fat accumulation and a heat shock protein 72-mediated decrease in JNK activity in the liver.


Allyl Compounds , Insulin Resistance , Mice , Animals , Diet, High-Fat/adverse effects , HSP72 Heat-Shock Proteins , Mice, Obese , Mice, Inbred C57BL , Disulfides/pharmacology , Allyl Compounds/pharmacology , Obesity/drug therapy , Obesity/metabolism
2.
Toxicology ; 487: 153463, 2023 03 15.
Article En | MEDLINE | ID: mdl-36813253

Methylmercury (MeHg), a global environmental pollutant, could seriously damage the central nervous system (CNS) and cause neurological disorders such as cerebellar symptoms. Although numerous studies have revealed detailed toxicity mechanisms of MeHg in neurons, toxicity in astrocytes is barely known. Here, we tried to shed light on the toxicity mechanisms of MeHg exposure in cultured normal rat cerebellar astrocytes (NRA), focusing on the involvement of reactive oxygen species (ROS) in MeHg toxicity by assessing the effects of major antioxidants Trolox, a free-radical scavenger, N-acetyl-L-cysteine (NAC), a potent thiol-containing antioxidant, and glutathione (GSH), an endogenous thiol-containing antioxidant. Exposure to MeHg at just approximately 2 µM for 96 h increased cell viability, which was accompanied by the increase in intracellular ROS level and at ≥ 5 µM induced significant cell death and lowered ROS level. Trolox and NAC suppressed 2 µM MeHg-induced increases in cell viability and ROS level corresponding to control, although GSH with 2 µM MeHg induced significant cell death and ROS increase. On the contrary, against 4 µM MeHg-induced cell loss and ROS decrease, NAC inhibited both cell loss and ROS decrease, Trolox inhibited cell loss and further enhanced ROS decrease, and GSH moderately inhibited cell loss and increased ROS level above the control level. MeHg-induced oxidative stress was suggested by increases in the protein expression levels of heme oxygenase-1 (HO-1), Hsp70, and Nrf2, except for the decrease in SOD-1 and no change in catalase. Furthermore, MeHg exposure dose-dependently induced increases in the phosphorylation of MAP kinases (ERK1/2, p38MAPK, and SAPK/JNK) and phosphorylation and/or expression levels of transcription factors (CREB, c-Jun, and c-Fos) in NRA. NAC successfully suppressed 2 µM MeHg-induced alterations in all of the above-mentioned MeHg-responsive factors, whereas Trolox suppressed some MeHg-responsive factors but failed to suppress MeHg-induced increases in the protein expression levels of HO-1 and Hsp70 and increase in p38MAPK phosphorylation. Protein expression analyses in NRA exposed to 2 µM MeHg and GSH were excluded because of devastating cell death. These results suggested that MeHg could induce aberrant NRA activation, and ROS must be substantially involved in the toxicity mechanism of MeHg in NRA; however, other factors should be assumed.


Antioxidants , Methylmercury Compounds , Rats , Animals , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , MAP Kinase Signaling System , Astrocytes , Oxidative Stress , Glutathione/metabolism , Acetylcysteine/pharmacology , Acetylcysteine/metabolism , Cells, Cultured
3.
Biochem Biophys Rep ; 32: 101398, 2022 Dec.
Article En | MEDLINE | ID: mdl-36467545

Chronic inflammation is considered as an etiology of obesity and type 2 diabetes. Brown adipose tissue (BAT) of obese animals shows increased inflammation. Regular exercise has anti-inflammatory effects; however, the effects of exercise training on BAT inflammation in obese animals remain unclear. Thus, this study aimed to investigate the effects of exercise training on inflammation-related signaling in the BAT of obese and diabetic rats. Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an obese/diabetic rodent model, were randomly divided into either sedentary (n = 11) or exercise training (n = 8) groups. Long-Evans Tokushima Otsuka (LETO; n = 9) rats were used as the nondiabetic sedentary controls. Exercise training using a treadmill was conducted 4 days per week for 20 weeks, starting at 5 weeks old. As a result, exercise training attenuated the phosphorylation levels of p65 and mitogen-activated protein kinases in the BAT of OLETF rats, concurrently with the improvement of obesity and systemic glucose tolerance. Moreover, exercise training decreased oxidative stress and increased the antioxidant and anti-inflammatory protein levels in the BAT. Conversely, exercise training did not alter the expression levels of uncoupling protein-1 and oxidative phosphorylation-related proteins in the BAT, which were lower in the OLETF rats than the LETO rats. In conclusion, our data suggest that exercise training prevents the activation of inflammatory signaling in the BAT of obese/diabetic rats.

4.
IBRO Neurosci Rep ; 13: 500-512, 2022 Dec.
Article En | MEDLINE | ID: mdl-36451778

PlexinA1 (PlxnA1) is a transmembrane receptor for semaphorins (Semas), a large family of axonal guidance cues vital during neural development. PlxnA1 is expressed in embryonic interneurons, and PlxnA1 deletion in mice leads to less interneurons in the developing cortex. In addition, PlxnA1 has been identified as a schizophrenia susceptibility gene. In our previous study, PlxnA1 knockout (KO) mice under a BALB/cAJ genetic background exhibited significantly increased self-grooming and reduced prepulse inhibition, a reliable phenotype for investigating the neurobiology of schizophrenia. However, the mechanism underlying the abnormal behavior of PlxnA1 KO mice remains unclear. We first confirmed PlxnA1 mRNA expression in parvalbumin-expressing interneurons (PV cells) in the medial prefrontal cortex (mPFC) of adult mice. Immunohistochemical analysis (IHC) showed significantly decreased densities of both GABAergic neurons and PV cells in the mPFC of PlxnA1 KO mice compared with wild type mice (WT). PV cells were found to express molecule interacting with CasL 1 (MICAL1), an effector involved in Sema-Plxn signaling for axon guidance, suggesting MICAL1 and PlxnA1 co-expression in PV cells. Furthermore, IHC analysis of 8-oxo-dG, an oxidative stress marker, revealed significantly increased oxidative stress in PlxnA1-deficient PV cells compared with WT. Thus, increased oxidative stress and decreased PV cell density in the mPFC may determine the onset of PlxnA1 KO mice's abnormal behavior. Accordingly, deficient PlxnA1-mediated signaling may increase oxidative stress in PV cells, thereby disrupting PV-cell networks in the mPFC and causing abnormal behavior related to neuropsychiatric diseases.

5.
Physiol Rep ; 10(9): e15297, 2022 05.
Article En | MEDLINE | ID: mdl-35546434

This study investigated the combined effects of exercise training and D-allulose intake on endurance capacity in mice. Male C57BL/6J mice were fed either a control diet (Con) or a 3% D-allulose diet (Allu) and further divided into the sedentary (Sed) or exercise training (Ex) groups (Con-Sed, Con-Ex, Allu-Sed, Allu-Ex, respectively; n = 6-7/group). The mice in the Ex groups were trained on a motor-driven treadmill 5 days/week for 4 weeks (15-18 m/min, 60 min). After the exercise training period, all mice underwent an exhaustive running test to assess their endurance capacity. At 48 h after the running test, the mice in the Ex groups were subjected to run at 18 m/min for 60 min again. Then the gastrocnemius muscle and liver were sampled immediately after the exercise bout. The running time until exhaustion tended to be higher in the Allu-Ex than in the Con-Ex group (p = 0.08). The muscle glycogen content was significantly lower in the Con-Ex than in the Con-Sed group and was significantly higher in the Allu-Ex than in the Con-Ex group (p < 0.05). Moreover, exercise training increased the phosphorylation levels of adenosine monophosphate-activated protein kinase (AMPK) in the muscle and liver. The phosphorylation levels of acetyl coenzyme A carboxylase (ACC), a downstream of AMPK, in the muscle and liver were significantly higher in the Allu-Ex than in the Con-Sed group (p < 0.05), suggesting that the combination of exercise training and D-allulose might have activated the AMPK-ACC signaling pathway, which is associated with fatty acid oxidation in the muscle and liver. Taken together, our data suggested the combination of exercise training and D-allulose intake as an effective strategy to upregulate endurance capacity in mice. This may be associated with sparing glycogen content and enhancing activation of AMPK-ACC signaling in the skeletal muscle.


AMP-Activated Protein Kinases , Physical Conditioning, Animal , AMP-Activated Protein Kinases/metabolism , Animals , Fructose/metabolism , Glycogen/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology
6.
Neurotoxicology ; 88: 196-207, 2022 01.
Article En | MEDLINE | ID: mdl-34883095

Diphenylarsinic acid (DPAA) is a non-natural pentavalent organic arsenic and was detected in well water in Kamisu, Ibaraki, Japan in 2003. Individuals that had consumed this arsenic-contaminated water developed cerebellar symptoms such as myoclonus. We previously revealed that DPAA exposure in rats in vitro and in vivo specifically affected astrocytes rather than neurons among cerebellar cells. Here, we evaluated adverse effects of DPAA in cultured normal human cerebellar astrocytes (NHA), which were compared with those in normal rat cerebellar astrocytes (NRA) exposed to DPAA at 10 µM for 96 h, focusing on aberrant activation of astrocytes; increase in cell viability, activation of MAP kinases (ERK1/2, p38MAPK, and SAPK/JNK) and transcription factors (CREB, c-Jun, and c-Fos), upregulation of oxidative stress-responsive factors (Nrf2, HO-1, and Hsp70), and also hypersecretion of brain cytokines (MCP-1, adrenomedullin, FGF-2, CXCL1, and IL-6) as reported in NRA. While DPAA exposure at 10 µM for 96 h had little effect on NHA, a higher concentration (50 µM for 96 h) and longer exposure (10 µM for 288 h) induced similar aberrant activation. Moreover, exposure to DPAA at 50 µM for 96 h or 10 µM for 288 h in NHA induced hypersecretion of cytokines induced in DPAA-exposed NRA (MCP-1, adrenomedullin, FGF-2, CXCL1, and IL-6), and IL-8 besides into culture medium. These results suggested that aberrantly activated human astrocytes by DPAA exposure might play a pivotal role in the pathogenesis of cerebellar symptoms, affecting adjacent neurons, microglia, brain blood vessels, or astrocyte itself through these brain cytokines in human.


Arsenicals/adverse effects , Astrocytes/drug effects , Cerebellum/drug effects , Cytokines/metabolism , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Transcription Factors/metabolism , Animals , Arsenicals/administration & dosage , Astrocytes/metabolism , Blotting, Western , Cerebellum/cytology , Cerebellum/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Rats , Rats, Wistar
7.
IBRO Rep ; 9: 276-289, 2020 Dec.
Article En | MEDLINE | ID: mdl-33163687

PlexinA1 (PlxnA1) is a transmembrane receptor for semaphorins, a large family of proteins that act as axonal guidance cues during nervous system development. However, there are limited studies on PlxnA1 function in neurobehavior. The present study examined if PlxnA1 deficiency leads to behavioral abnormalities in BALB/cAJ mice. PlxnA1 knockout (KO) mice were generated by homologous recombination and compared to wild type (WT) littermates on a comprehensive battery of behavioral tests, including open field assessment of spontaneous ambulation, state anxiety, and grooming, home cage grooming, the wire hang test of muscle strength, motor coordination on the rotarod task, working memory on the Y maze alternation task, cued and contextual fear conditioning, anxiety on the elevated plus maze, sociability to intruders, and sensory processing as measured by prepulse inhibition (PPI). Measures of motor performance, working memory, fear memory, and sociability did not differ significantly between genotypes, while PlxnA1 KO mice displayed excessive self-grooming, impaired PPI, and slightly lower anxiety. These results suggest a crucial role for PlxnA1 in the development and function of brain regions controlling self-grooming and sensory gating. PlxnA1 KO mice may be a valuable model to investigate the repetitive behaviors and information processing deficits characteristic of many neurodevelopmental and psychiatric disorders.

8.
PLoS One ; 14(8): e0221440, 2019.
Article En | MEDLINE | ID: mdl-31430342

The corpus callosum (CC) is the biggest commissure that links cerebral hemispheres. Guidepost structures develop in the cortical midline during CC development and express axon guidance molecules that instruct neurons regarding the proper direction of axonal elongation toward and across the cortical midline. Neuropilin-1 (Npn1), a high affinity receptor for class 3 semaphorins (Sema3s) localized on cingulate pioneering axons, plays a crucial role in axon guidance to the midline through interactions with Sema3s. However, it remains unclear which type of Plexin is a component of Sema3 holoreceptors with Npn1 during the guidance of cingulate pioneering axons. To address the role of PlexinA1 in CC development, we examined with immunohistochemistry the localization of PlexinA1, Npn1, and Sema3s using embryonic brains from wild-type (WT) and PlexinA1-deficient (PlexinA1 knock-out (KO)) mice with a BALB/cAJ background. The immunohistochemistry confirmed the expression of PlexinA1 in callosal axons derived from the cingulate and neocortex of the WT mice on embryonic day 17.5 (E17.5) but not in the PlexinA1 KO mice. To examine the role of PlexinA1 in the navigation of callosal axons, the extension of callosal axons toward and across the midline was traced in brains of WT and PlexinA1 KO mice at E17.5. As a result, callosal axons in the PlexinA1 KO brains had a significantly lower incidence of midline crossing at E17.5 compared with the WT brains. To further examine the role of PlexinA1 in CC development, the CC phenotype was examined in PlexinA1 KO mice at postnatal day 0.5 (P0.5). Most of the PlexinA1 KO mice at P0.5 showed agenesis of the CC. These results indicate the crucial involvement of PlexinA1 in the midline crossing of callosal axons during CC development in BALB/cAJ mice.


Axons/metabolism , Corpus Callosum/embryology , Corpus Callosum/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Agenesis of Corpus Callosum/embryology , Agenesis of Corpus Callosum/pathology , Animals , DCC Receptor/metabolism , Embryo, Mammalian/metabolism , Ligands , Mice, Inbred BALB C , Mice, Knockout , Neocortex/metabolism , Neuropilin-1/metabolism , Phenotype , Semaphorin-3A/metabolism
9.
ACS Appl Mater Interfaces ; 9(34): 28650-28658, 2017 Aug 30.
Article En | MEDLINE | ID: mdl-28795814

Over the last few decades, because of the significant development of anion exchange membranes, increasing efforts have been devoted the realization of anion exchange membrane fuel cells (AEMFCs) that operate with the supply of hydrogen generated on-site. In this paper, ammonia was selected as a hydrogen source, following which the effect of conceivable impurities, unreacted NH3 and atmospheric CO2, on the performance of AEMFCs was established. As expected, we show that these impurities worsen the performance of AEMFCs significantly. Furthermore, with the help of in situ attenuated total reflection infrared (ATR-IR) spectroscopy, it was revealed that the degradation of the cell performance was primarily due to the inhibition of the hydrogen oxidation reaction (HOR). This is attributed to the active site occupation by CO-related adspecies derived from (bi)carbonate adspecies. Interestingly, this degradation in the HOR activity is suppressed in the presence of both NH3 and HCO3- because of the bicarbonate ion consumption reaction induced by the existence of NH3. Further analysis using in situ ATR-IR and electrochemical methods revealed that the poisonous CO-related adspecies were completely removed under NH3-HCO3- conditions, accompanied by the improvement in HOR activity. Finally, a fuel cell test was conducted by using the practical AEMFC with the supply of NH3-contained H2 gas to the anode and ambient air to the cathode. The result confirmed the validity of this positive effect of NH3-HCO3- coexistence on CO2-tolerence of AEMFCs. The cell performance achieved nearly 95% of that without any impurity in the fuels. These results clearly show the impact of the chemically induced bicarbonate ion consumption reaction on the realization of highly CO2-tolerent AEMFCs.

10.
Toxicol Sci ; 156(2): 509-519, 2017 04 01.
Article En | MEDLINE | ID: mdl-28087833

Diphenylarsinic acid (DPAA) was a major compound found in the arsenic poisoning incident that occurred in Kamisu, Ibaraki, Japan in 2003. People exposed to DPAA via contaminated well water suffered from several neurological disorders, including cerebellar symptoms. We previously reported that DPAA induces cellular activation in cultured rat cerebellar astrocytes, dose-dependent promotion of cell growth (low DPAA), cell death (high DPAA), and increased phosphorylation of mitogen-activated protein (MAP) kinases (p38MAPK, SAPK/JNK, and ERK1/2). Moreover, DPAA induces up-regulation of oxidative stress-counteracting proteins, activation of CREB phosphorylation, increased protein expression of c-Jun and c-Fos, and aberrant secretion of brain-active cytokines (MCP-1, adrenomedullin, FGF2, CXCL1, and IL-6). Here, we explored the role of MAP kinases in DPAA-induced activation of astrocytes using specific MAP kinase signaling inhibitors [SB203580 (p38MAPK), SP600125 (SAPK/JNK), SCH772984 (ERK1/2), and U0126 (MEK1/2, a kinase for ERK1/2)]. DPAA-induced activation of MAP kinases had little contribution to DPAA-induced cell growth and death. On the other hand, a power relationship among MAP kinases was also observed, in which p38MAPK suppressed DPAA-induced SAPK/JNK and ERK1/2 activation, whereas ERK1/2 and MEK1/2 facilitated p38MAPK and SAPK/JNK activation. In addition, SAPK/JNK had minimal effects on the activation of other MAP kinases. DPAA-induced activation of transcription factors and secretion of brain-active cytokines were submissively but intricately dominated by MAP kinases. Collectively, our results indicate that DPAA-induced activation of MAP kinases is neither a cell growth-promoting response nor a cytoprotective one but leads to transcriptional disruption and aberrant secretion of brain-active cytokines in cerebellar astrocytes.


Arsenicals/pharmacology , Astrocytes/drug effects , Cerebellum/drug effects , MAP Kinase Signaling System/drug effects , Animals , Astrocytes/enzymology , Blotting, Western , Cells, Cultured , Cerebellum/cytology , Cerebellum/enzymology , Immunoenzyme Techniques , Rats
11.
Int J Dev Neurosci ; 53: 58-67, 2016 Oct.
Article En | MEDLINE | ID: mdl-27444810

Insulin receptor signaling has been shown to regulate essential aspects of CNS function such as synaptic plasticity and neuronal survival. To elucidate its roles during CNS development in vivo, we examined the synaptic and cognitive development of the spontaneously diabetic Goto-Kakizaki (GK) rats in the present study. GK rats are non-obese models of type 2 diabetes established by selective inbreeding of Wistar rats based on impaired glucose tolerance. Though they start exhibiting only moderate hyperglycemia without changes in plasma insulin levels from 3 weeks postnatally, behavioral alterations in the open-field as well as significant impairments in memory retention compared with Wistar rats were observed at 10 weeks and were worsened at 20 weeks. Alterations in insulin receptor signaling and signs of insulin resistance were detected in the GK rat hippocampus at 3 weeks, as early as in other insulin-responsive peripheral tissues. Significant reduction of an excitatory postsynaptic scaffold protein, PSD95, was found at 5w and later in the hippocampus of GK rats due to the absence of a two-fold developmental increase of this protein observed in Wistar control rats between 3 and 20w. In the GK rat hippocampus, NR2A which is a NMDA receptor subunit selectively anchored to PSD95 was also reduced. In contrast, both NR2B and its anchoring protein, SAP102, showed similar developmental profiles in Wistar and GK rats with expression peaks at 2 and 3w. The results suggest that early alterations in insulin receptor signaling in the GK rat hippocampus may affect cognitive performance by suppressing synaptic maturation.


Diabetes Mellitus, Type 2/pathology , Gene Expression Regulation, Developmental/physiology , Hippocampus/pathology , Synapses/pathology , Age Factors , Animals , Animals, Newborn , Blood Glucose/metabolism , Body Weight , Cyclophilins/metabolism , Disease Models, Animal , Disks Large Homolog 4 Protein , Hippocampus/growth & development , Hippocampus/metabolism , Insulin/blood , Intracellular Signaling Peptides and Proteins/metabolism , Locomotion/physiology , Male , Maze Learning/physiology , Membrane Proteins/metabolism , Mutation Rate , Phosphoric Diester Hydrolases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrophosphatases/metabolism , Rats , Rats, Wistar , Receptor, Insulin/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Statistics, Nonparametric , Synapses/metabolism , Vesicular Glutamate Transport Protein 1/metabolism
12.
Toxicol Sci ; 150(1): 74-83, 2016 Mar.
Article En | MEDLINE | ID: mdl-26645585

Diphenylarsinic acid (DPAA) was detected as the primary compound responsible for the arsenic poisoning that occurred in Kamisu, Ibaraki, Japan, where people using water from a well that was contaminated with a high level of arsenic developed neurological (mostly cerebellar) symptoms and dysregulation of regional cerebral blood flow. To understand the underlying molecular mechanism of DPAA-induced cerebellar symptoms, we focused on astrocytes, which have a brain-protective function. Incubation with 10 µM DPAA for 96 h promoted cell proliferation, increased the expression of antioxidative stress proteins (heme oxygenase-1 and heat shock protein 70), and induced the release of cytokines (MCP-1, adrenomedullin, FGF2, CXCL1, and IL-6). Furthermore, DPAA overpoweringly increased the phosphorylation of three major mitogen-activated protein kinases (MAPKs) (ERK1/2, p38MAPK, and SAPK/JNK), which indicated MAPK activation, and subsequently induced expression and/or phosphorylation of transcription factors (Nrf2, CREB, c-Jun, and c-Fos) in cultured rat cerebellar astrocytes. Structure-activity relationship analyses of DPAA and other related pentavalent organic arsenicals revealed that DPAA at 10 µM activated astrocytes most effective among organic arsenicals tested at the same dose. These results suggest that in a cerebellum exposed to DPAA, abnormal activation of the MAPK-transcription factor pathway and irregular secretion of these neuroactive, glioactive, and/or vasoactive cytokines in astrocytes can be the direct/indirect cause of functional abnormalities in surrounding neurons, glial cells, and vascular cells: This in turn might lead to the onset of cerebellar symptoms and disruption of cerebral blood flow.


Arsenicals/adverse effects , Astrocytes/drug effects , Cerebellum/drug effects , Cytokines/metabolism , Mitogen-Activated Protein Kinases/metabolism , Transcription Factors/genetics , Water Pollutants, Chemical/toxicity , Animals , Animals, Newborn , Arsenicals/chemistry , Astrocytes/enzymology , Cell Culture Techniques , Cell Survival/drug effects , Cells, Cultured , Cerebellum/cytology , Cerebellum/enzymology , Dose-Response Relationship, Drug , Phosphorylation , Rats, Wistar , Structure-Activity Relationship , Time Factors , Up-Regulation , Water Pollutants, Chemical/chemistry
13.
J Toxicol Sci ; 40(4): 459-68, 2015 Aug.
Article En | MEDLINE | ID: mdl-26165642

Tributyltin (TBT) is an organotin used as an anti-fouling agent for fishing nets and ships and it is a widespread environmental contaminant at present. There is an increasing concern about imperceptible but serious adverse effect(s) of exposure to chemicals existing in the environment on various organs and their physiological functions, e.g. brain and mental function. Here, so as to contribute to improvement of and/or advances in in vitro cell-based assay systems for evaluating brain-targeted adverse effect of chemicals, we tried to evaluate cell-type-specific and differentiation-status-dependent variations in the cytotoxicity of TBT towards neurons and astrocytes using the four culture systems differing in the relative abundance of these two types of cells; primary neuron culture (> 95% neurons), primary neuron-astrocyte (2 : 1) mix culture, primary astrocyte culture (> 95% astrocytes), and passaged astrocyte culture (100% proliferative astrocytes). Cell viability was measured at 48 hr after exposure to TBT in serum-free medium. IC50's of TBT were 198 nM in primary neuron culture, 288 nM in primary neuron-astrocyte mix culture, 2001 nM in primary astrocyte culture, and 1989 nM in passaged astrocyte culture. Furthermore, in primary neuron-astrocyte mix culture, vulnerability of neurons cultured along with astrocytes to TBT toxicity was lower than that of neurons cultured purely in primary neuron culture. On the other hand, astrocytes in primary neuron-astrocyte mix culture were considered to be more vulnerable to TBT than those in primary or passaged astrocyte culture. The present study demonstrated variable cytotoxicity of TBT in neural cells depending on the culture condition.


Astrocytes/cytology , Astrocytes/drug effects , Cell Survival/drug effects , Cerebral Cortex/cytology , Neurons/cytology , Neurons/drug effects , Trialkyltin Compounds/toxicity , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Female , Pregnancy , Rats, Wistar
14.
Mol Med Rep ; 11(2): 829-36, 2015 Feb.
Article En | MEDLINE | ID: mdl-25351707

The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild­type (WT) mice. Administration of ß­estradiol to infant Sema4D­deficient (Sema4D­/­) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same ß­estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin­B1, was examined as well as the level of apoptosis in the vaginal epithelia of five­week­old WT and Sema4D­/­ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin­B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase­3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five­week­old Sema4D­/­ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D­/­ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis­inducing activity of Sema4D. The experimental reduction of plexin­B1 expression in vaginal epithelial cells demonstrated the integral role of plexin­B1 in Sema4D­induced apoptotic cell death. These results suggest a non­redundant role of Sema4D in the postnatal tissue remodeling process in five­week­old BALB/c mice, which involves the induction of vaginal epithelial cell apoptosis through Sema4D binding to plexin­B1.


Semaphorins/metabolism , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Estradiol/pharmacology , Female , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Semaphorins/genetics , Semaphorins/pharmacology , Vagina/cytology , Vagina/pathology
15.
J Neurosci Res ; 93(4): 592-603, 2015 Apr.
Article En | MEDLINE | ID: mdl-25447738

Developmental hypothyroidism causes severe impairments in the cerebellum. To understand the role of thyroid hormones (THs) in cerebellar development, we examined the effect of three different THs, thyroxine (T4), 3,5,3'-triidothyronine (T3), and 3,3',5'-triiodothyronine (reverse T3; rT3), on the survival and morphology of cerebellar granule neurons (CGNs) in culture and found novel actions specific to T4. Rat CGNs obtained at postnatal day 6 were first cultured for 2 days in serum-containing medium with 25 mM K(+) (K25), then switched to serum-free medium with physiological 5 mM K(+) (K5) or with K25 and cultured for an additional 2 or 4 days. CGNs underwent apoptosis in K5 but survived in K25. Addition of T4 at concentrations of 100-200 nM but not T3 or rT3 rescued CGNs from cell death in K5 in a dose-dependent manner. Furthermore, 200 nM T4 was also effective in maintaining the neurites of CGNs in K5. In K5, T4 suppressed tau phosphorylation at two developmentally regulated sites as well as phosphorylation of c-jun N-terminal kinase (JNK) necessary for its activation and localization to axons. These results suggest that, during cerebellar development, T4 exerts its activity in cell survival and neurite maintenance in a manner distinct from the other two thyroid hormones through regulating the activity and localization of JNK.


Cerebellum/cytology , Neurites/drug effects , Neurons/cytology , Thyroxine/pharmacology , Actins/metabolism , Analysis of Variance , Animals , Animals, Newborn , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , In Situ Nick-End Labeling , In Vitro Techniques , MAP Kinase Kinase 4/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Organ Culture Techniques , Potassium/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Tubulin/metabolism
16.
Neurotoxicol Teratol ; 44: 46-52, 2014.
Article En | MEDLINE | ID: mdl-24882564

Bisphenol A (BPA) is a widespread environmental contaminant, and humans are routinely exposed to BPA. We investigated whether prenatal exposure to BPA influences behavioral development in juvenile cynomolgus monkeys (Macaca fascicularis). Pregnant cynomolgus monkeys were implanted with subcutaneous pumps and exposed to 10µg/kg/day BPA or vehicle (control) from gestational day 20 to 132. Both BPA-exposed and control juvenile monkeys (aged 1-2years) were assessed using the peer-encounter test that was conducted to evaluate behaviors in social interaction with a same-sex, same-treatment peer. In the encounter test, prenatal BPA exposure significantly reduced environmental exploration and presenting, a gesture related to sexual reproduction, and increased visual exploration, but only in males; furthermore, it significantly reduced the typical sexual dimorphism of the aforementioned behaviors normally observed between male and female juvenile cynomolgus monkeys. This study demonstrates that prenatal BPA exposure affects behavioral development during adolescence and results in the demasculinization of key sexually dimorphic behaviors in male juvenile monkeys.


Benzhydryl Compounds/toxicity , Phenols/toxicity , Prenatal Exposure Delayed Effects , Social Behavior , Age Factors , Animals , Female , Macaca fascicularis , Male , Pregnancy , Sexual Behavior, Animal/drug effects
17.
PLoS One ; 9(5): e97909, 2014.
Article En | MEDLINE | ID: mdl-24841081

Around the fifth week after birth, the vaginal cavity in female mouse pups opens to the overlaying skin. This postnatal tissue remodeling of the genital tract occurs during puberty, and it largely depends upon hormonally induced apoptosis that mainly occurs in the epithelium at the lower part of the mouse vaginal cavity. Previously, we showed that most BALB/c mice lacking the class IV Semaphorin (Sema4D) develop imperforate vagina and hydrometrocolpos; therefore, we reasoned that the absence of Sema4D-induced apoptosis in vaginal epithelial cells may cause the imperforate vagina. Sema4D signals via the Plexin-B1 receptor; nevertheless detailed mechanisms mediating this hormonally triggered apoptosis are not fully documented. To investigate the estrogen-dependent control of Sema4D signaling during the apoptosis responsible for mouse vaginal opening, we examined structural and functional modulation of Sema4D, Plexin-B1, and signaling molecules by analyzing both wild-type and Sema4D-/- mice with or without ovariectomy. Both the release of soluble Sema4D and the conversion of Plexin-B1 by proteolytic processing in vaginal tissue peaked 5 weeks after birth of wild-type BALB/c mice at the time of vaginal opening. Estrogen supplementation of ovariectomized wild-type mice revealed that both the release of soluble Sema4D and the conversion of Plexin-B1 into an active form were estrogen-dependent and concordant with apoptosis. Estrogen supplementation of ovariectomized Sema4D-/- mice did not induce massive vaginal apoptosis in 5-week-old mice; therefore, Sema4D may be an essential apoptosis-inducing ligand that acts downstream of estrogen action in vaginal epithelium during this postnatal tissue remodeling. Analysis of ovariectomized mice also indicated that Sema4D contributed to estrogen-dependent dephosphorylation of Akt and ERK at the time of vaginal opening. Based on our results, we propose that apoptosis in vaginal epithelium during postnatal vaginal opening is induced by enhanced Sema4D signaling that is caused by estrogen-dependent structural changes of Sema4D and Plexin-B1.


Antigens, CD/metabolism , Apoptosis/physiology , Estrogens/metabolism , Nerve Tissue Proteins/metabolism , Puberty/physiology , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Vagina/growth & development , Analysis of Variance , Animals , Antigens, CD/genetics , Blotting, Western , Female , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Proteolysis , Real-Time Polymerase Chain Reaction , Receptors, Cell Surface/genetics , Reverse Transcriptase Polymerase Chain Reaction , Semaphorins/genetics
18.
Int J Mol Med ; 33(6): 1635-42, 2014 Jun.
Article En | MEDLINE | ID: mdl-24714875

Semaphorin family members have been identified as axonal guidance molecules that mediate the directional determination for axonal elongation during neuronal development. Several semaphorins have been shown to play crucial roles for various immune response phases. In a previous study using knockout mice, we suggested that Plexin-A1, a Semaphorin 3A (Sema3A) receptor, is involved in the increased production of inflammatory factors such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in the murine microglial response to lipopolysaccharide (LPS). In that study, Sema3A-Plexin-A1 signaling was also shown to have crosstalk with Toll-like receptor 4 (TLR4) signaling to increase nitric oxide production, although the specific intracellular signaling molecule involved in the NO increase was not identified. By investigating the role of Plexin-A1 in the response of the BV-2 microglial cell line to LPS, in the present study novel findings regarding the influence of Plexin-A1 activation on TLR4 signaling in microglial cells were investigated. First, the production of inflammatory markers such as inducible nitric oxide synthase (iNOS), IL-1ß and TNF-α in the response to TLR4 stimulation was significantly decreased in BV-2 cells with the knockdown of Plexin-A1. Accordingly, Plexin-A1 was required for the enhanced production of inflammatory factors induced by LPS in BV-2 microglial cells. Second, Plexin-A1 signaling in BV-2 cells showed crosstalk with the LPS-induced TLR4 pathway through activation of nuclear factor-κB (NF-κB) and extracellular signal­regulated kinase (ERK). Third, LPS-induced NO production in BV-2 cells was intensified by Sema3A-Plexin-A1 signaling in an ERK1/2 activation-dependent manner. This finding suggested the crucial role of Plexin-A1 signaling through ERK activation in TLR4 activation-induced NO production in BV-2 microglial cells. These results therefore suggest that Plexin-A1 and Sema3A are possible new targets for treating LPS-induced encephalopathy and neuroinflammation-related mental disorders.


Extracellular Signal-Regulated MAP Kinases/metabolism , Microglia/metabolism , Nerve Tissue Proteins/metabolism , Nitric Oxide/metabolism , Receptors, Cell Surface/metabolism , Semaphorin-3A/metabolism , Animals , Blotting, Western , Cell Line , Cell Survival/genetics , Cell Survival/physiology , Extracellular Signal-Regulated MAP Kinases/genetics , Genotype , Mice , Nerve Tissue Proteins/genetics , Neuropilin-1/genetics , Neuropilin-1/metabolism , Receptors, Cell Surface/genetics , Semaphorin-3A/genetics
19.
Int J Mol Med ; 33(5): 1122-30, 2014 May.
Article En | MEDLINE | ID: mdl-24604454

Recent investigations have suggested that semaphorins, which are known repulsive axon guidance molecules, may play a crucial role in maintaining brain homeostasis by regulating microglial activity. Sema3A, secreted in higher amounts from injured neurons, is considered to suppress excessive inflammatory responses by inducing microglial apoptosis through its binding to Plexin-A1 receptors on activated microglia. To clarify the in vivo role of Plexin-A1-mediated signaling in lipopolysaccharide (LPS)-induced injury in mouse brain, we examined the neuroinflammatory changes initiated by LPS administration to the cerebral ventricles of wild-type (WT) and Plexin-A1-deficient (-/-) mice. WT mice administered LPS exhibited a significantly higher expression of COX-2, iNOS, IL-1ß and TNF-α in the hippocampus, and a significantly greater ventricular enlargement and intracerebral infiltration of leukocytes, as compared with the saline-treated group. By contrast, Plexin-A1-/- mice administered LPS did not exhibit a significantly increased expression of COX-2, iNOS, IL-1ß or TNF-α in the hippocampus as compared with the saline-treated group. Plexin-A1-/- mice administered LPS did not show significant increases in ventricle size or infiltration of leukocytes into the brain, as compared with the saline-treated group. In WT, but not in the Plexin-A1-/- primary microglia treated with LPS, Sema3A induced significantly more nitric oxide production than in the immunoglobulin G control. These results revealed the crucial role of the Sema3A-Plexin-A1 interaction in the Toll-like receptor 4-mediated signaling of the LPS-induced activation of microglia. Thus, results of the present study revealed the essential role of Plexin-A1 in the development of LPS-induced neuroinflammation in mice, suggesting the possible application of microglial control of the semaphorin-plexin signaling system to the treatment of LPS-induced encephalopathy and other psychiatric diseases associated with neuroinflammation.


Lipopolysaccharides/toxicity , Microglia/metabolism , Nerve Tissue Proteins/metabolism , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Receptors, Cell Surface/metabolism , Toll-Like Receptors/metabolism , Animals , Cyclooxygenase 2/metabolism , Interleukin-1beta/metabolism , Mice , Nerve Tissue Proteins/genetics , Nitric Oxide Synthase Type II/metabolism , Receptors, Cell Surface/genetics , Tumor Necrosis Factor-alpha/metabolism
20.
Int J Dev Neurosci ; 31(8): 751-61, 2013 Dec.
Article En | MEDLINE | ID: mdl-24076339

Thyroid hormone (TH) plays essential roles in normal brain development mainly by regulating gene expression through binding to specific nuclear receptors which serve as transcription factors. Previous studies showed that perinatal deficiency of TH or impairment of its signaling severely affect brain development, especially the development of the γ-aminobutyric acid (GABA) system, but cellular and molecular targets of the hormone are only partly uncovered. In the present study, we focused on the developing rat hippocampus which was confirmed to be one of the regions highly sensitive to TH status, and found two new targets of the hormone among the pre- and post-synaptic components of the GABAergic system. One was glutamic acid decarboxylase 65 (GAD65), the protein level of which was reduced to less than 50% of control in the hippocampus of hypothyroid rats (obtained by administering 0.025% methimazole in drinking water to pregnant dams from gestational day 15 until 4 weeks postpartum) and recovered to control levels by daily thyroxine-replacement after birth. Reduction in GAD65 protein was correlated immunohistochemically with a 37% reduction in the number of GAD65-positive cells as well as a reduction in GAD65-positive processes. In contrast, the other GAD isotype, GAD67, was not affected by TH status. A subpopulation of GABAergic neurons containing parvalbumin was also confirmed to be highly dependent on TH status. The second target of thyroid hormone was neuron-specific K(+)/Cl(-) co-transporter, KCC2, which is responsible for switching of GABA action from excitatory to inhibitory. In the euthyroid hippocampus, a sharp rise of kcc2 expression was observed at postnatal day (PND)10 which was followed by a large increase in KCC2 protein at PND15. This transient rise in kcc2 expression was completely suppressed by hypothyroidism, resulting in nearly 80% reduction in KCC2 protein at PND15. These results indicate that the development of GABAergic terminals and the excitatory to inhibitory maturation of GABA signaling are strongly dependent on TH.


Gene Expression Regulation, Developmental/physiology , Hippocampus/cytology , Hippocampus/growth & development , Thyroid Hormones/metabolism , gamma-Aminobutyric Acid/metabolism , Age Factors , Animals , Animals, Newborn , Disease Models, Animal , Female , Gene Expression Regulation, Developmental/drug effects , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Hypothyroidism/chemically induced , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , Hypothyroidism/pathology , Imidazoles/toxicity , Male , Parvalbumins/metabolism , Pregnancy , Rats , Rats, Wistar , Symporters/genetics , Symporters/metabolism , Thyroid Hormones/blood , Thyroxine/blood , Thyroxine/pharmacology , Thyroxine/therapeutic use , K Cl- Cotransporters
...